Fast, Efficient and Scalable Solutions
Explore the comprehensive NCERT Textbook Solutions for Class IX.
If a ray stands on a line, then the sum of two adjacent angles formed by that ray is 180°.
If the sum of two adjacent angles is 180°, then their non common arms of the angles form a line. This property is called as the Linear pair axiom.
When two lines intersect each other, then the vertically opposite angles so formed will be equal.
The sum of all angles around a Point is equal to 360°.
In the figure, lines AB and CD intersect at O . If $ \angle $ AOC + $ \angle $ BOE = 70° and $ \angle $ BOD = 40°, find $ \angle $ BOE and reflex $ \angle $ COE.
Solution :
Given, $ \angle $ AOC + $ \angle $ BOE = 70° and $ \angle $ BOD = 40°
OA and OB are opposite rays, Therefore AB is a line.
Since ray OC stands in a straight line AB
( ∵ Sum of linear pair is always 180° )
∴ $ \angle $ AOC + $ \angle $ BOC = 180°
Calculate $ \angle $ COE
⇒ $ \angle $ AOC + $ \angle $ COE + $ \angle $ BOE = 180°
( ∵ $ \angle $ BOC = $ \angle $ COE + $ \angle $ BOE )
⇒ ($ \angle $ AOC + $ \angle $ BOE )+ $ \angle $ COE = 180°
( ∵ Given, $ \angle $ AOC + $ \angle $ BOE = 70° )
⇒ 70° + $ \angle $ COE = 180°
⇒ $ \angle $ COE = 180° - 70° = 110°
Calculate Reflex $ \angle $ COE
( The sum of all angles around a Point is equal to 360° )
Now, Reflex $ \angle $ COE = 360° - $ \angle $ COE
∴ Reflex $ \angle $ COE = 360° - 110° = 250°
Calculate $ \angle $ BOE
⇒ Now, OC and OD are opposite rays, Therefore CD is a line.
Since ray OE stands in a straight line CD
⇒ $ \angle $ COE + $ \angle $ BOE + $ \angle $ BOD = 180°
( ∵ Sum of linear pair is always 180° )
⇒ 110° + $ \angle $ BOE + 40°= 180°
( ∵ $ \angle $ COE = 110° proved above and Given, $ \angle $ BOD = 40° )
⇒ 150° + $ \angle $ BOE = 180°
⇒ $ \angle $ BOE = 180° - 150°
⇒ $ \angle $ BOE = 30°
Hence, $ \angle $ BOE = 30° and Reflex $ \angle $ COE = 250°
In the figure, lines XY and MN intersect at O. If $ \angle $ POY = 90° and a: b = 2 : 3, find c
Solution :
Given, a: b = 2 : 3 and $ \angle $ POY = 90°
OX and OY are opposite rays, Therefore XY is a line.
Since ray OP stands in a straight line XY
( ∵ Sum of linear pair is always 180° )
Calculate $ \angle $ XOP
∴ $ \angle $ XOP + $ \angle $ POY = 180°
( ∵ Given, $ \angle $ POY = 90° )
∴ $ \angle $ XOP = 180° - 90° = 90°
( ∵ $ \angle $ XOP = $ \angle $ XOM + $ \angle $ MOP )
⇒ $ \angle $ XOM + $ \angle $ MOP = 90°
⇒ b + a = 90°
2. Find the values of a and b using the ratio
Since a and b are in the ratio 2 : 3
∴ Let a = 2x and b = 3x
⇒ 2x + 3x = 90°
⇒ 5x = 90°
⇒ x = 18°
Now, since a = 2x , Substituting value of x
⇒ a = 2 × 18°
⇒a = 36°
Now, since b = 3x , Substituting value of x
⇒ b = 3 × 18°
⇒b = 54°
3. Find the value of c
Now, Since ray OX stands in a straight line MN
$ \angle $ XOM + $ \angle $ XON = 180°
( ∵ Sum of linear pair is always 180° )
( ∵ $ \angle $ XOM = b and $ \angle $ XON = c )
⇒ b + c = 180°
( ∵ $ \angle $ XOM = b = 54° proved above )
⇒ 54° + c = 180°
⇒ c = 180° - 54° = 126°
Answer c = 126°
In the figure, $ \angle $ PQR = $ \angle $ PRQ, then prove that $ \angle $ PQS = $ \angle $ PRT.
Solution :
Given, $ \angle $ PQR = $ \angle $ PRQ
To prove, $ \angle $ PQS = $ \angle $ PRT
QS and QR are opposite rays, Therefore SR is a line.
Since ray QP stands in a straight line SR
( ∵ Sum of linear pair is always 180° )
∴ $ \angle $ PQS + $ \angle $ PQR = 180° .. ... (i)
Similarly RT and QR are opposite rays, Therefore QT is a line.
Since ray RP stands in a straight line QT
( ∵ Sum of linear pair is always 180° )
∴ $ \angle $ PRQ + $ \angle $ PRT = 180° ......(ii)
Now, from equation (i) and equation (ii)
⇒ $ \angle $ PQS + $ \angle $ PQR = $ \angle $ PRQ + $ \angle $ PRT
( ∵ Given, $ \angle $ PQR = $ \angle $ PRQ, Now, substituting $ \angle $ PQR at the place of $ \angle $ PRQ in above expression )
⇒ $ \angle $ PQS + $ \angle $ PQR = $ \angle $ PQR + $ \angle $ PRT
⇒ $ \angle $ PQS +
$ \angle $ PQR-$ \angle $ PQR= $ \angle $ PRT⇒ $ \angle $ PQS = $ \angle $ PRT
Hence Proved,
In the figure,if x + y = w + z, then prove that AOB is a line.
Solution :
Given, x + y = w + z
To prove : AOB is a line
$ \angle $ x + $ \angle $ y + $ \angle $ w + $ \angle $ z = 360°
( ∵ The sum of all angles around a Point is equal to 360° )
∴ (x + y )+ (x + y ) = 360°
( ∵ Given, x + y = w + z )
⇒ 2x + 2y = 360°
⇒ 2(x + y) = 360°
⇒ x + y = 180°
Therefore, x and y form a linear pair.
Hence, AOB is a straight line. Proved.
In the figure, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray lying between rays OP and OR. Prove that $ \angle $ ROS = 1/2 ($ \angle $ QOS – $ \angle $ POS)
Solution :
Given, OR is perpendicular to PQ
To prove : $ \angle $ ROS = 1/2 ($ \angle $ QOS – $ \angle $ POS)
According to the question,
$ \angle $ POR = $ \angle $ QOR = 90°
( ∵ OR is perpendicular to line PQ )
$ \angle $ POR = $ \angle $ QOR
( ∵ $ \angle $ POR = $ \angle $ POS + $ \angle $ ROS )
( ∵ $ \angle $ QOR = $ \angle $ QOS - $ \angle $ ROS )
⇒ $ \angle $ POS + $ \angle $ ROS = $ \angle $ QOS - $ \angle $ ROS
⇒ 2($ \angle $ ROS) = $ \angle $ QOS - $ \angle $ POS
⇒ $ \angle $ ROS = 1/2($ \angle $ QOS - $ \angle $ POS)
Hence Proved.
t is given that $ \angle $ XYZ = 64° and XY is produced to point P. Draw a figure from the given information. If ray YQ bisects $ \angle $ ZYP, find $ \angle $ XYQ and reflex $ \angle $ QYP.
Solution :
Given, $ \angle $ XYZ = 64° . And A ray YQ bisects $ \angle $ ZYP
XY is produced out to point P .
Since ray YZ stands in a straight line XP
( ∵ Sum of linear pair is always 180° )
∴ $ \angle $ XYZ + $ \angle $ ZYP = 180°
(∵ Given, $ \angle $ XYZ = 64° )
⇒ 64° + $ \angle $ ZYP = 180°
⇒ $ \angle $ ZYP = 180° - 64°
⇒ $ \angle $ ZYP = 116°
Since YQ bisects $ \angle $ ZYP
( ∵ $ \angle $ ZYQ = $ \angle $ QYP )
∴ $ \angle $ ZYQ = $ \angle $ QYP = 116°/ 2
Therefore, $ \angle $ ZYQ = $ \angle $ QYP = 58°
Now, $ \angle $ XYQ = $ \angle $ XYZ + $ \angle $ ZYQ
⇒ $ \angle $ XYQ = 64° + 58°
⇒ $ \angle $ XYQ = 122°
Now, reflex $ \angle $ QYP
⇒ 360° - $ \angle $ QYP
( ∵ $ \angle $ QYP = 58° proved above )
⇒ 360° - 58°
Reflex $ \angle $ QYP = 302°
( )
Advanced courses and exam preparation.
Advanced courses and exam preparation.
Explore programming, data science, and AI.